Extensions 1→N→G→Q→1 with N=C15 and Q=C2xC42

Direct product G=NxQ with N=C15 and Q=C2xC42
dρLabelID
C2xC4xC60480C2xC4xC60480,919

Semidirect products G=N:Q with N=C15 and Q=C2xC42
extensionφ:Q→Aut NdρLabelID
C15:1(C2xC42) = C4xS3xF5φ: C2xC42/C4C2xC4 ⊆ Aut C15608C15:1(C2xC4^2)480,994
C15:2(C2xC42) = C2xDic3xF5φ: C2xC42/C22C2xC4 ⊆ Aut C15120C15:2(C2xC4^2)480,998
C15:3(C2xC42) = C2xC4xC3:F5φ: C2xC42/C2xC4C4 ⊆ Aut C15120C15:3(C2xC4^2)480,1063
C15:4(C2xC42) = F5xC2xC12φ: C2xC42/C2xC4C4 ⊆ Aut C15120C15:4(C2xC4^2)480,1050
C15:5(C2xC42) = C4xD5xDic3φ: C2xC42/C2xC4C22 ⊆ Aut C15240C15:5(C2xC4^2)480,467
C15:6(C2xC42) = C4xS3xDic5φ: C2xC42/C2xC4C22 ⊆ Aut C15240C15:6(C2xC4^2)480,473
C15:7(C2xC42) = C4xD30.C2φ: C2xC42/C2xC4C22 ⊆ Aut C15240C15:7(C2xC4^2)480,477
C15:8(C2xC42) = C2xDic3xDic5φ: C2xC42/C23C22 ⊆ Aut C15480C15:8(C2xC4^2)480,603
C15:9(C2xC42) = C42xD15φ: C2xC42/C42C2 ⊆ Aut C15240C15:9(C2xC4^2)480,836
C15:10(C2xC42) = D5xC4xC12φ: C2xC42/C42C2 ⊆ Aut C15240C15:10(C2xC4^2)480,664
C15:11(C2xC42) = S3xC4xC20φ: C2xC42/C42C2 ⊆ Aut C15240C15:11(C2xC4^2)480,750
C15:12(C2xC42) = C2xC4xDic15φ: C2xC42/C22xC4C2 ⊆ Aut C15480C15:12(C2xC4^2)480,887
C15:13(C2xC42) = Dic5xC2xC12φ: C2xC42/C22xC4C2 ⊆ Aut C15480C15:13(C2xC4^2)480,715
C15:14(C2xC42) = Dic3xC2xC20φ: C2xC42/C22xC4C2 ⊆ Aut C15480C15:14(C2xC4^2)480,801


׿
x
:
Z
F
o
wr
Q
<